Chapter 1

Introducing Engineers to
Relativity

space, time and
gravitation,
briefly

One of the best introductions to his theory of relativity is found in Einstein’s
essays [Einstein], in which he stated:

“The theory of relativity is that physical theory which is based on a consis-
tent physical interpretation of the concepts of motion, space and time. The
name ‘theory of relativity’ is connected with the fact that motion from the
point of view of possible experience always appears as the relative motion
of one object with respect to another.

“Motion is never observable as ‘motion with respect to space’ or, as it
has been expressed, as ‘absolute motion." The ‘principle of relativity' in
it's widest sense is contained in the statement: The totality of physical
phenomena is of such a character that it gives no basis for the introduction
of the concept of ‘absolute motion’; or shorter but less precise: There is no
absolute motion.” Einstein continued with:

“The development of the theory of relativity proceeded in two steps, ‘special
theory of relativity’ and ‘general theory of relativity." The latter presumes the
validity of the former as a limiting case and is its consistent continuation.”

Einstein then briefly described both the special and the general theories of
relativity. It is worth to emphasize the fact which Einstein stated above—it
is not two theories; general relativity completely includes special relativity
as a limiting case where the gravitational field is negligible. Such a limiting
case can happen in empty space, far away from massive objects and in
the absence of acceleration. It can also happen closer to massive objects,
inside a small laboratory that is in free-fall, where the gravitational field is
practically not detectable inside the laboratory.

15
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CHAPTER 1. INTRODUCING ENGINEERS TO RELATIVITY 16

1.1 The special theory of relativity, briefly

Einstein was lead to his special theory of relativity by his believe that there
is no way to detect absolute motion. This dictated that the measured speed
of light must be the same in all inertial frames of reference.* Einstein called

*Inertial frames are uniformly moving coordinate systems, far away from gravitational
or any other form of influence, where inertia is isotropic, meaning a given force will
cause the same acceleration on identical masses in whatever direction the force is

applied.

this the “Light-principle”, or L-principle for short.

Einstein realized that of if this principle does not hold, there must be a ‘rest-
frame’ for light. This means that we could in principle set up an inertial
frame in which light would not propagate in the forward direction at all
(if the frame moves at the speed of light relative to the aether). Einstein
reportedly contemplated if he would still be able to see his own face in a
mirror if they were both at rest in such a frame.

We can extend this to say that radars as we know them would not work
in such a moving inertial frame. Even at less extreme speeds, standard
radars would report wrong distances, with errors that depend on direction
of movement. More about radar measurements later.

Einstein realized that it is paradoxical to assume the same light ray can
actually move with the same speed ¢ (in an absolute Newtonian sense)
relative to all inertial frames. This would require that light adapts it's
"absolute speed” to the frame that measures it. He decided that either
time intervals or distance measurements (or both) must change if measured
by observers in different inertial frames that are in relative motion.

Exactly how these intervals must change, Einstein found in the transforma-
tion equations that Lorentz has developed before. These equations trans-
forms time and distance measurements from one inertial frame to another
precisely as required by the L-principle.

We will deal with the Lorentz transformation in a later chapter. For the
purpose of introduction, it requires that for any two events, A and B that
occurs in space and time, there is a quantity called the spacetime interval
that remains unchanged, irrespective of in which inertial frame the compo-
nents of the spacetime interval are measured.

The spacetime interval can be ‘spacelike’, ‘lightlike’ or ‘timelike’, as defined
below:

(Aspace)? — (Atime)?  if Aspace > Atime (spacelike),
As? = 0 if Aspace = Atime  (lightlike),
(Atime)? — (Aspace)?  if Aspace < Atime  (timelike),

in geometric units, where ¢ = 1 so that Atime and Aspace are expressed
in the same units. Most engineers would probably prefer this to rather be
expressed in the normal Sl units of metres and seconds. It can be done
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CHAPTER 1. INTRODUCING ENGINEERS TO RELATIVITY 17

by simply replacing all references to time by ct, thus converting seconds to
metres. The spacetime interval will look then like this:

Ax? — 2At? if Ax > cAt  (spacelike),
As* = 0 if Ax = cAt (lightlike),
A2 — Ax? if Ax < cAt  (timelike).

The author attempts to use Sl units throughout, but here and there it
is so much clearer if the constant c¢ is not cluttering the equations that
geometric units are being used. It is usually very clear which units are
under consideration.

time ct
As = 2 (timelike)

As = 0 (lightlike)

2.0 As = 2 (spacelike)
1.5
1.0
0.5
space X

1.0 15 20

Figure 1.1: Spacetime intervals plotted for As ranging from 0 to 2 in 0.5 steps,
both lightlike and timelike. For x large, they all approach the As = 0 (lightlike) line
asymptotically. Note the precise symmetry of spacelike and timelike intervals around the

lightlike interval.

Figure 1.1 illustrates the three types of interval on a standard spacetime
diagram. A timelike interval is the only type where an observer, traveling
slower than light, can be present at both events. This is so because there is
enough time to cover the distance between the two events at a speed slower
than that of light.

It then follows that a spacelike interval is the type where nothing, not even
light, can be present at both events. In relativistic jargon, the two events
are not causally connected, or stated more simply, the two events could not
have influenced each other.

A lightlike interval is the borderline between the above two intervals and
is only applicable to some types of waves and to massless particles—light,
radio waves, gravitational waves, etc—things that move at the speed of
light.

Spacelike intervals are normally denoted by As and timelike intervals with
AT, so that As = —cAr.

The fact that the (spacetime) interval remains unchanged, irrespective of
which inertial system measures it, may appear to be completely unremark-
able. In Newton mechanics, where time intervals and space intervals remain
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CHAPTER 1. INTRODUCING ENGINEERS TO RELATIVITY 18

unchanging when you change your inertial frame of reference, the interval
will obviously remain unchanged.

Newton however, demands that the measured speed of light is different
in different inertial reference frames. In order to conform to Einstein's L-
principle (the invariance of the measured speed of light), either Atime or
Aspace or both must change if you switch between inertial reference frames
that is moving relative to each other.

In order to satisfy the L-principle and leave the interval unchanging, both
must change in a very specific way.

The speed connection If we take the timelike interval between two

events A and B as
cAT =V 2At?2 — As?

and factorize c2At? out from the righthand side, we get

cAT =1/1 —%X2At, (1.1)

where x = %, which can be interpreted as the uniform speed that an
observer must maintain (relative to the reference frame) to be present at

both events.

The arrow AB in figure 1.2 represents an observer that leaves event A at
time t4 and arrives at event B at time ¢, as measured in the coordinate
system x, ct. In the coordinate system of the moving observer (x/, ct’), the
arrival time is at time ¢, so that At =ty —t/y = Ar.

time (ct)

ctp
ct’y

Act' = V2AZ — Ax2 = /1 — %2 cAt

ctA7ct£4 ..............

Ax

XA XB

space (x)

Figure 1.2: The arrow AB represents a uniformly moving observer that is present
at both events A and B. In order to keep the interval As invariant, the moving observer

must measure a time interval of At' = /1 — x®At.

By definition, the ‘moving’ observer is stationary in an inertial frame that
moves at a speed x relative to the original reference frame. Since the
observer is present at both events, the two events are separated in the
observer’s space by Ax’ = 0. The interval AT must be identical for both
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inertial frames, so

AT = VAL — Ax2 = \/2AL? — 0 = cAt,

meaning the time difference between the two events must be measured by
the moving observer as

At = At = /1 - %*At. (1.2)

This statement counters the argument that is sometimes expressed, namely
that special relativity is ambiguous in that either of the two observers can be
considered as moving relative to the other one, so either could be considered
as having a clock that is ‘slow’ when compared to the other’s.

Here the situation is not symmetrical—one observer is present at both events
and the other one is not. It is true that any one of the observers can be cho-
sen as ‘stationary’ and the other one as moving relative to this ‘stationary’
frame of reference.

However, if the two (inertial) observers are moving relative to each other,
only one of them can be present at both events.* The time interval mea-

*Provided that the two events do not both happen at the place and moment where
the two observers pass each other—then they will both measure At = Ax = 0, which

is not an interesting experiment.

sured by that observer is called the propertime interval, Ar. Propertime
is an extremely important concept in relativity theory.

The above interpretation has nothing to do with the fact that distant ob-
servers will detect events with a time delay caused by the finite speed of
light. By ‘measure the time difference’ we mean that the event times have
been corrected for the time that light takes to travel from the event to the
observer.

This does of course mean that the distance between the observer and the
events must be known, which brings us to the way inertial observers will
measure the distance between the two events.

Let Pam be the observer that moves between events A and B at a speed x
relative to Jim. Let event A happens as the two of them pass each other.
There is no problem to understand how Pam measures the distance between
the events. She is after all present at both and the distance in her inertial
frame is zero.

How does Jim, who is not present at both events, measure the distance
between events A and B? Let event B be a flash of light, generated by
Pam after she has moved some distance away from Jim.

Equip Jim with a good radar with which he can constantly monitor Pam'’s
distance as she moves away from him. Jim can read the distance (Ax) of
event B at the moment he observes the light flash, directly from his radar.

The fact that by the time Jim observes the flash from event B, Pam will
be some distance past the position of the event, does not influence Jim's
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confidence in his measurement. The return signal of his radar and the flash
of event B started out at precisely the same place and time and came to
him at the same speed—the speed of light.

It is fairly obvious that Jim will measure a longer distance between the two
events than Pam. Pam is the ‘moving observer’, who here measured the
distance as zero!

However, Pam was stationary in her own inertial frame of reference, so
for her Jim was the ‘moving observer’. The only—and very significant—
difference between Pam and Jim is that Pam was present at both events
and Jim was not.

Inertial observers that are moving relative to Pam cannot also be present
at both events.* They will all measure time and distance intervals between

*Remember, they are inertial observers, so they cannot turn around in any way. |

the two events that are longer then those measured by Pam.

The reason for laboring the observation of the time and space intervals
between events is this: events in empty space give us something ‘tangible’
to base comparisons between inertial frames on.

It does not say whose clock is running faster or slower than anybody else's.
It does say unequivocally who will measure the shorter time and distance
between two events—it the observer who is present at both events.

One of the classic ‘tests’ of special relativity's predictions is the case of the
muon particles. They are created high in the earth’'s atmosphere by cosmic
rays hitting oxygen atoms. The muons have such a short ‘half-life’* that

*Half-life is a statistical parameter, meaning the time in which half of the particles
(on average) would have decayed.

even if they travel at the speed of light,* virtually none of them could

‘ *Which they don't, but they come quite close to the speed of light. |

possibly make it to the surface of the Earth.

Yet they are routinely detected in laboratories on Earth in reasonable abun-
dance. The secret lies in the fact that the muons are present at two events,
C (their creation) and D (their detection on the ground), while we as ob-
servers on the ground are clearly not present at both events.

On Newtonian grounds, we predict that the time that the muons would
take to reach the ground is much too long for any appreciable number to
survive. Because of their high speed, the muons experience a time difference
between events C' and D that is much shorter than what Newton would
have predicted, allowing a lot of them to make it to the ground.

So far, this introduction was an ‘engineering-like’ attempt to acquaint the
reader with the all important spacetime interval. So before we go any
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further, it will be appropriate to give a brief overview of how the relativists
view and express the spacetime interval.

1.2 The formal spacetime metric, briefly

Spacetime, in the absence of gravity, is expressed by the Minkowski metric
with a line element

ds®> = N dx'dx” (u,v=0,1,2,3)
—c2dt? + da® + dy® + d2?, (1.3)

where 1), is the Minkowski metric tensor. The indices 1 and v indicate
which component of 4-space is under consideration (i.e., t,z,y or z). In
this notation, x* does not mean x raised to the power p, but rather that
1 is an index that indicates how x must be summed.

This ‘Einstein summation convention’ sums over repeated indices, e.g., the
p and v in 7, and dxMdx"”, without the implicit summation sign being
used. For example, if both p and v range from 0 to 1 only, the summation
will result in

N dxtdx” = 1, (dx°dx® + dx%dx" + dx'dx® + dx'dx"). (1.4)

When p and v range from 0 to 3, the summation will naturally have all
combinations up to dx3dx3, i.e., 16 terms in all. Each dx*dx” term is
multiplied by the corresponding element of the metric tensor 7, which is
best represented by a 4x4 matrix.

For Minkowski spacetime the 7,,, matrix is relatively simple, presented here
as a “bordered matrix” for clarity:

0 1 2 3
0/-1 0 0 0
1o 100

)= ol o 0 1 o
3\o 00 1

where only the diagonal elements are non-zero and they are unitary, indi-
cating ‘flat’ spacetime. It means that only terms with y = v remains after
multiplication and the coefficients are all unity, so that

Nudxtdx’ = —(dx°)?+ (dx')? + (dx*)* + (dx*)?
—cPdt? + dx? + dy? + d22. (1.5)

This may look like a very round-about way to achieve a simple result. And
what is more, to rigorously prove that the metric tensor 7, has the form
shown above, requires quite complex tensor analysis. We will skip that and
accept the 7),,, matrix at face value. The complexity is the price paid for
mathematical generality.
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The dx*dx" terms can represent many things, not just 4-space coordinates.
Further, ds* = 1, dx"dx" is not restricted to ‘flat’ spacetime, as we will
see later. Also, the formalism can handle virtually any coordinate system.
We can replace the Cartesian coordinate system (z,y, z) with an equivalent
spherical coordinate system (7,6, ¢), as shown in figure 1.3, where

r = rcosfsing
= rsinfsing
z = rcosao.

When dx, dy and dz are computed from the above and substituted into the
Cartesian line element, the line element for spherical coordinates becomes

ds® = —c2dt* + dr® + r?d¢?® + r?sin® ¢ db?, (1.6)
valid for ‘flat’ spacetime.
dr
z
(@9, z)‘ rsin ¢ df
L Nas
r z

Figure 1.3: Small changes in 7, § and ¢ create an ‘orthogonal coordinate system'’
dr, rd¢ and rsin ¢ df at point z,y, z. Note that while dr signifies radial displacement,
the other two directions signify transverse (or tangential) displacements relative to the

origin.

This gives the elements of the 7, matrix for spherical coordinates as

10 0 0
o1 0o o0
) =10 o 2 o0
0 0 0 r2sin’o

The above spherical form of the metric is not important in flat spacetime,
but is very convenient in the curved spacetime environment of general re-
lativity, as will be discussed later in this chapter.

The spacetime line element ds corresponds to a spacelike interval As. We
have seen before that a timelike interval, normally indicated by A7, can be
obtained from c?A71? = —As?. So the timelike line element can be written

as
Adr? = —ds? = Adt? — dz® — dy? — dz>.

Some authors prefer to work solely with the timelike interval as the metric
of spacetime, e.g., [Faber]. This is presumably because most of the intervals
that we can observe and measure are timelike.
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The Lorentz transformation. A Dutch physicist H.A. Lorentz is
credited with a set of transformation equations that transformed space and
time between inertial frames in relative motion. Historically, Lorentz was
not the first person making the suggestion,* but he was the first to publish

*G.Fitzgerald, an lIrish physicist, first postulated a contraction in the direction of
movement. Relativistic length contraction is commonly known as Lorentz/Fitzgerald

contraction.

the set of equations, now known as the Lorentz transformation

Lorentz did not discover special relativity though. He simply found a math-
ematical way to transform measurements made on objects moving through
the aether (or absolute space) that made them conform to the null result
of the aether-drift experiment of Michelson and Morley.

In essence, his equations transformed the space interval (Ax’) and time
interval (At’) as measured by a frame moving relative to the aether, to the
‘absolute’ space interval Ax and ‘absolute’ time interval At.

Lorentz had no physical theory for why his transformations seem to agree
with experiments. He did postulate that length contraction might be a
physical reality, but he could not explain why time had to transformed
too, other than that it explained observations. The Lorentz transformation
equations in Sl units are:

/ g /

Ax = % (L.7)
/ ’, /

cAp = CAY + XAX' (1.8)

V1-%?

where x = %, the speed relative to the aether. Einstein’s contribution
was that these equations can be used to transform time and space directly
between any two inertial frames in relative motion and not just between an
inertial frame and the absolute (aether) frame. In short, they conform to
the principles of relativity.

The meaning of Einstein’s interpretation of the Lorentz transformation is
simply this: measure a space interval and a time interval in any inertial
frame. Through the invariance of the spacetime interval, the transformation
tells you what the value of the space and time intervals will be in any other
inertial frame.

The ‘absolute frame of reference’, the aether, was not required at all. As
we will see later, things are sometimes much simpler when we do not have
to contend with the aether—especially in one-way Doppler measurements.

1.3 The general theory of relativity, briefly

Einstein's general theory of relativity is essentially a theory about the gra-
vitational fields generated by massive objects. It is also about the dynamics
of objects moving in such gravitational fields.
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The objects can be massless particles like photons that always move at
the speed of light relative to every inertial reference frame; or they can be
massive objects that always move at speeds less than that of light relative
to every inertial reference frame.

The gravitational field can be thought of as a ‘deformation’ of the fabric
of spacetime caused by massive objects. ‘Test objects’ move ‘as straight as
possible’ through this deformed spacetime.

All cases are locked up in Einstein's field equations, the Einstein equation
for short. With ¢ =1, G = 1,* it is given by

‘ *This means that geometric units are being used for simplicity and clarity. |

1
Ry — §R Guw =T (where p,v =0,1,2,3), (1.9)

where R, is the Ricci tensor, R the Ricci scalar, g, the generalized
form of the metric tensor 71, and T},, the energy-momentum tensor. The
Ricci tensor is a contraction of the Riemann curvature tensor and the Ricci
scalar is the trace of the Ricci tensor.

So the equation tells us how the energy and momentum in space (the right
hand side) cause the curvature of spacetime (the left hand side). The
curvature of spacetime influences the movement of massive bodies through
spacetime, thus changing the momenta. So there is ‘cross-talk’ between
the left- and right hand sides, making the full equation very, very difficult
to solve.

For any given situation there are up to 10 different T}, values to be estab-
lished in terms of energy, distance and time—not 16, because the tensor is
symmetrical, meaning Typ; = Thg etc. Various solutions to these equations
presumably represent every possible equation of motion that exists in the
macroscopic universe.

We will not dig into all that complexity, but rather attempt to provide some
intuitive feel for certain specific solutions. The first, and perhaps best known
exact solution to Einstein’s field equation was derived by Karl Schwarzschild
in 1916, only months after Einstein published his general theory of relativity.

This solution provides the gravitational field outside of an isolated, spher-
ically symmetrical, non-rotating mass, permanently at rest at the origin of
a 3-d spherical coordinate system 7,6, ¢ (as in figure 1.3).

In such a case R,, = T, = 0, but all the components making them up
are not zero (the components simply sum to zero). The solution is then
simpler, though not trivial at all. The spacetime metric of the gravitational
field is obtained through the metric tensor, just like for flat spacetime, as

ds® = G dxMdx",

or
Adr? = — g dxtdx",
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with
cdt dr d¢ do

cdt {goo O 0 0

_dr 0 gu1 O 0
(gl“/) - d¢ O O 922 0 9

de 0 0 0 g3s

so that the metric becomes
Adr? = —(gog Adt? + g11 dr? + 929 d¢2 + 933 d92) (1.10)
By (tediously)* solving for the T}, of the energy-momentum tensor and

*Found in most general relativity texts. The details fall outside of the scope of this
book.

casting them into g, form, the following values are obtained for the non-
zero elements of the metric tensor:

goo = —(1—-240) (1.11)

g1 = (1-— %)_1 =—1/g00 (1.12)

g2 = 17 (1.13)

gs3 = r’sin®¢. (1.14)

(1.15)

This gives the ‘Schwarzschild metric’' as
Adr? = (1 — 280 2q42 — L —r2d¢? — r?sin® ¢ d6®.  (1.16)
rc? 1— 2G]2\4 ’ :

It is easy to see that when rc? > 2G M, i.e., far from the central mass, the
metric reduces to the ‘flat’ Minkowski spacetime of special relativity.

Because of the ‘awkwardness'* of using, especially, v/—goo in many places,

*Some texts, e.g. [Pathria] use the convention of labeling indices from 1 to 4 and

making time the 4" coefficient gu4.

goo will be replaced by gis = —goo = 1 — 2GM/(rc?), meaning the ‘time-
time’ coefficient of the Schwarzschild metric.

To make it clear that the usage is nonstandard, the other coefficient that is
regularly used, g11, will be relabeled g,.., loosely meaning the ‘radial-radial’
coefficient. Now, if we express d7 in terms of dt, like we did for special
relativity, we get

dr®  r%(d¢? + sin® ¢ do?)

2 742
I age T 2de | cat”.

C2d7'2 = [gtt

Since dr? is a radial spatial displacement squared and r2(d¢? + sin? ¢ d6?)
is a transverse spatial displacement squared, we can write

2 v? Ut2 2
dT = [Qtt — grrc—Z — 6—2] dt . (117)

Copyright 2006: www.einsteins-theory-of-relativity-4engineers.com. All rights reserved.



CHAPTER 1. INTRODUCING ENGINEERS TO RELATIVITY 26

where v, and v; are the radial and transverse coordinate velocity components
respectively.

This is a most illuminating expression of the spacetime metric. It tells us
that, compared to coordinate time flow dt?, propertime flow dr? is reduced
by three terms inside the bracket.

The first is a static term: g4, which is always less than unity. The other
two are velocity related terms: g,,.v2/c? and v?/c?. We will first examine
the static term in more detail.

dr/dt
1
0.817 T/dt = /gt
0.707
0 2 4 6 TC2/(GM)

Figure 1.4: The gravitational time dilation factor (or propertime flow dr/dt), against
coordinate radial distance r from mass M. The region 2% <r <= 6%\2/[ has special

significance (see text for details). Far from mass M, when r — oo, d7/dt — 1.

As shown in figure 1.4, the ‘rate of propertime flow' d7/dt is zero at r =
2G M /c?* and then increases rapidly until r = 4GM/c?, where the slope of
the curve is unity (45 degrees). After that, the curve starts to approach
unity asymptotically.

We will later see that the measured static gravitational acceleration (i.e.,
the initial acceleration of an object kept stationary and then released so
that it free-falls), is proportional to the slope of the curve dr/dt against r,
at least to a first approximation.

This suggests that the measured gravitational acceleration at r = 2G M /c?
will approach infinity. This radial distance is called the Schwarzschild radius
rg and the spherical surface associated with rg is called the event horizon
of a static black hole. Because of the infinite acceleration, nothing, not
even light, can escape from within the event horizon.

The velocity related terms are a bit more subtle. We have met the velocity
time dilation factor of flat spacetime: dr?/dt?> = 1 — v?/c?, where v? =
v2+v?, the square of the vector sum of the radial and transverse components
of velocity v.

In curved spacetime, the vector sum differs, because radial velocity is af-
fected by the curvature of space. Itis illuminating to write the Schwarzschild
solution in the following form:

dr? 9 v2 v?

a2 :gtt[l_grrc_; _grrc_z]' (1.18)
This can be viewed as the product of a gravity related time dilation factor
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(g1t) and a velocity related time dilation factor (1 —v?/c?). One can guess
the vector summation equation from d7/dt above as:

v? v}
Uiy = Gor =5 + Grr—g (1.19)
c c
where vy, is the velocity as measured by the local observer and v,.,v; are
the coordinate (i.e. distant observer) velocities. A local observer must be
inertial (free falling) and momentarily stationary in the reference frame at
the time and place of the measurement. The timelike metric can then be
simply written as
dr? = gu(1 —v2) dt?, (1.20)

relating proper time and coordinate time by the product of the gravitational
time dilation (redshift) and a simple velocity time dilation.

Note that despite the local velocity being measured by a locally stationary
observer, the equation gives the rate of the locally moving clock (d7) as a
function of the rate of the coordinate clock (dt).

This shows very clearly that special relativity is a special case of general
relativity. Special relativity rules when the gravitational field is weak or
absent (gi = 1)—then it is only velocity time dilation that occurs.

From the above we have the very useful transformation formulae between
local (v,) and coordinate (v, ) velocities in Schwarzschild spacetime (recall
that g,» > 1 and gi = 1/g,r)

Uz(lo) - gg?“ vg(co)’ (121)
Uf(lo) = G vt2(co)7 (122)
Ureo) = it Urio)s (1.23)
vtz(w) = 9u U?(lo)' (1.24)

To make sense out of the velocity transformations, remember that someone
with a slower clock (the local observer) will measure a shorter time and thus
a higher speed than someone with a faster clock (the distant observer).
This explains the transverse velocity transformation, but why the additional
factor g, for radial velocities?

This is caused by the gradient of curved space. Near the source of gravity,
distances appear to be ‘compressed’ in the radial direction, as viewed by
the distant observer. Therefore, radial movement appears to the distant
observer to slow down by a further factor gy, as shown in figure 1.5, where
geometrized units have been used for clarity, i.e. M = GM/c?, or G =
1, c=1.

The ‘compression’ of radial distances by a gravitational field can be viewed
as caused partially by gravitational time dilation and partially by the gradient
of curved space (actually, partially here means that both have an equal share
in the outcome). The gradient of curved space at a distance r from a mass

M is given by
dz 2M
= = 1.25
dr git 7 ( )
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o 2(r) = v/8gtt M /7

A/ QQttM/’!‘ At}

Ar

gttAt

Figure 1.5: Proper radial distance increments (Af) against coordinate radial distance
increments (Ar), showing both gravitational time dilation (redshift) and space curvature.
The segments A/ represent the proper distance that light travel in time interval At, which
become shorter closer to the origin due to gravitational time dilation. Then the gradient
of the local space curve z(r) causes the projection onto the coordinate radial axis to be

‘compressed’ further.

giving z as a function of r (after integration, with the expanded g;;)*

*An easy to follow derivation of z(r) is given in [MTW], section 23.8. |

|8gu M
z(r) = SgulM + constant, (1.26)
T

as used in figure 1.5. This figure illustrates so much of the gravitational
field around a static, spherically symmetric mass, that it warrants a closer
look. Firstly, if space had no curvature, i.e., z(r) = constant, there would
still have been an apparent contraction in the radial direction, as observed
by the distant observer, i.e.,

Al = V gttAta

the distance that light propagates in coordinate time interval At.

If clocks slow down near the central mass, then so does the propagation of
light, at least as viewed by the distant observer. A local observer cannot
detect this ‘slowing down’ of light, because if your clock and your measuring
rod* changes precisely in step, you cannot detect the ‘slowing down’.

‘ *All distance measurements are directly or indirectly based on the speed of light. |

A distant observer can, in principle, detect the ‘slowing down’ of light by
measuring the round trip travel time of light, beamed from a large distance
to the mass and being reflected back from the surface of the mass.*

This is the effect of gravitational redshift alone. Because of the gradient of
curved space, the effective movement of light in the radial direction is still
‘slower’ than that. From the gradient equation and since dr? = d¢?> — dz?
(see figure 1.5), it is easy to show that

dr = /gy dl = gy dt, (1.27)
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‘ *A black hole will not reflect light, but a neutron star will work nicely.

the projection of d¢ onto the coordinate radial distance axis. Therefore,
the radial ‘contraction’ factor of curved space is identical to the contraction
factor of gravitational redshift, both being ./gy:.

This means that as far as distant observers are concerned, light moving
precisely radially relative to a central mass ‘slows down' to gyc.

Light moving (momentarily)* in a purely transverse direction relative to a

*There is a case where light can be in orbit around a black hole, but more about that

later.

mass, is slowed down just by the gravitational redshift factor, to /g c.

Since the full effect can only be measured indirectly, it is not called a ‘slowing
down of light', but rather a ‘delay of light'.*

*|t is called the Shapiro delay, after the man who first measured it accurately, as is

discussed further in chapter 5.

1.4 Summary of this introduction to relativity

We have seen that in the gravity-free space of special relativity, there is a
quantity called the spacetime interval that is invariant, i.e., it has the same
value, no matter which inertial observer measures the components of the
interval.

This lead us to the conclusion that an observer that is present at two
spacetime events will always measure a time interval that is shorter than
what any observer that is not present at both events will measure. This
time interval (measured by the observer present at both events) is called
the propertime between two events.

The more formal view of the spacelike and the timelike interval was then
derived, using just a sprinkling of tensor algebra. We then moved on to a
fairly loose discussion of Einstein's field equations and an even more loose
derivation of the metric for the gravitational field was presented.

This lead us to the (disturbing?) realization that the speed of light varies
in Schwarzschild coordinates with the direction of movement—at least as
measured by a distant observer. This forced us to accept that distant
observers will measure different velocities than what local observers will
measure. There are however relatively simple transformation equations for
velocities as measured locally and remotely.

Underlying to this is the fact that time and distance are measured differently
by distant clocks and local clocks. In particular, distant clocks runs faster
than local clocks and the difference becomes more noticeable if the local
clock is moving relative to the coordinate system.
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Now, to move forward, we will discuss a few topics in special relativity that
are of fundamental importance—clock synchronization, energy, momentum
and Doppler shift. They are the sort of things that many engineers use daily
and may perhaps sometimes wonder how relativity influences their work.
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