
3.2.3 Результаты испытаний образцов из литья сплава Д16М при статическом нагружении после обработки нестационарным электромагнитным полем.

Представлены результаты статических испытаний цилиндрических образцов диаметром 5мм (с записью диаграммы разрушения (рисунок 3) и значения разрушающего напряжения (таблица 3)), изготовленных плавлением из плиты сплава Д16М с различной технологической обработкой

Относительная остаточная деформация є ,%

Рисунок 3 – Диаграммы растяжения цилиндрических образцов

- 2- образец без обработки
- 5 образец после обработки нестационарным электромагнитным полем модификатор Sc-Mn-Ni/Cd-Al-Ni
- 7, 9 образцы после обработки нестационарным электромагнитным полем. Плавление -модификатор Al-Cu-Al/Al-Cu-Al. Выдержка модификатор Sc-Mg -Zn/ Mg-Si-Ni
- 10 образец после обработки нестационарным электромагнитным полем. Плавление -модификатор Al-Cu-Al/Al-Cu-Al. Выдержка модификатор Zn-Mn-Cd /B-Mg-Zn
- 14 образец после обработки нестационарным электромагнитным полем. Плавление модификатор Al- Cu-Al/Al-Cu-Al. Выдержка модификатор Fe-Zr-B/ Fe-Zr-B Таблица 3

№ образца	1	2	5	7	9	10	14
σ _{разруш.,} кГ/мм ²	7,1	8,1	7,3	12,2	12,9	3,7	5,5

3.2.4 Спектральный анализ образцов

Для части образцов, представленных в подразделе 3.2.3, был проведён спектральный анализ для выявления возможного воздействия модифицирующих элементов и режимов воздействия нестационарного электромагнитного поля на изменение состава образцов. Спектральный анализ проводился на квантометре МФС8 с

анализатором МАЭС (многоканальный анализатор атомно-эмиссионных спектров). Для возбуждения использовался генератор УГ-4. Результаты количественного спектрального анализа представлены в таблице 1. Для элементов В и Sc проводился качественный анализ, по интенсивности спектральных линий.

Таблица 1

РЕЗУЛЬТАТЫ СПЕКТРАЛЬНОГО АНАЛИЗА ОТЛИВОК ИЗ СПЛАВА Д16М												
№ Обр.	Cu	Mg	Mn Хим	Fe ически	Si й соста	Zn 1B B %	Ti	Ni	Cd	Zr	Разупоряд при плавке	Упоряд. при выдержке
Треб. ГОСТ	3,8- 4,9	1,2- 1,8	0,3- 0,9	<0,5	<0,5	<0,3	<0,1	<0,1				
0	4,28	1,32	0,62	0,34	0,27	0,15	0,038	0,035	0,0081	0,0048	Исходный материал Д16М (не плавился)	
1	3,6	1,4	0,53	0,3	0,33	0,19	0,036	0,036	0,0098	0,0049	Без эл.маг .Обработки	
6	3,52	1,3	0,52	0,3	0,42	0,19	0,037	0,032	0,0114	0,0042	Sc-Mn- Ni Cd-Al-Ni	
9	3,72	1,35	0,52	0,32	0,45	0,19	0,033	0,035	0,0108	0,0033	Al-Cu-Al Al-Cu-Al	Sc-Mg-Zn Mg-Si-Ni
10	3,94	1,3	0,53	0,3	0,45	0,18	0,034	0,04	0,0086	0,0043	Al-Cu-Al Al-Cu-Al	Zn-Mn-Cd B-Mg-Zr
13	4	1,24	0,57	0,37	0,45	0,17	0,036	0,037	0,009	0,004	Al-Cu-Al Al-Cu-Al	Fe-Zr-B Fe-Zr-B

^{*)} Примечание: для B, Sc проводился качественный анализ по интенсивности спектральных линий. Содержание элементов -на уровне шумов эталона без B и Sc.

ЗАКЛЮЧЕНИЕ

Проведённая экспериментальная проверка влияния нестационарного электромагнитного поля волнового генератора «Модулятор электромагнитный типа МЭМ-1»на прочность алюминиевого сплава Д16Т позволяет сделать следующие выводы:

1.Выбор материала Д16М для изготовления образцов литьём следует признать неудачным из-за большого количества брака:

образец №1- волосяная трещина у галтели;

№2 – разломился при установке в захват;

№3 – разломился при точении;

№6 - волосяная трещина;

№11 - волосяная трещина;

№12 - волосяная трещина;

^{**)}Для хим. Состава должно выполняться требование: сумма Fe + Ni не более 0,5; сумма прочих примесей не более 0,1; каждая примесь не более 0,05%.

№13 – разломился при клеймении отливки;

№15 – разломился при точении.

На разломе образцов №5 и №10 видны следы раздела поверхностей, образовавшихся при литье. Чистота поверхности после токарной обработки не соответствует требованиям 7класса.

- 2. Диаграммы испытаний образцов, изготовленных литьём с обработкой нестационарным электромагнитным полем, отличаются от диаграммы контрольного образца №2, кривая которого идёт более полого. Этот факт можно считать результатом воздействия нестационарного электромагнитного поля на алюминиевый сплав Д16М. Наиболее заметно это выявилось для образцов №7 и №9 (эти образцы подвергались одинаковому воздействию нестационарного электромагнитного поля).
- 3. Спектральный анализ показал, что содержание элементов во всех образцах соответствует требованиям к сплаву Д16 по ГОСТ.

Наиболее заметно меняется процентное содержание меди. Уменьшение содержания Си после выплавки для всех образцов по сравнению с исходным материалом (плита толщиной 13 мм), включая образец без обработки нестационарным электромагнитным полем, могло произойти за счёт окисления и образования шлака.

Подобная картина просматривается и для Мп.

Более тугоплавкие элементы Ni и Ti имеют небольшой разброс, по видимому, в пределах точности.

Для образца №13 увеличение содержания Fe соответствует режиму воздействия с использованием этого же элемента и воздействие может быть причиной увеличения.

Для Mg влияние обработки нестационарным электромагнитным полем не превышает изменения состава без обработки.

Для Si, Zn и Cd минимальное содержание, а для Zr максимальное - в исходном образце.

Качественный анализ показал отсутствие Sc и B в образцах.

4. Необходимо провести исследование влияния нестационарного электромагнитного поля на прочность алюминиевого сплава в более широком диапазоне изменения технологических факторов.