ИСПОЛЬЗОВАНИЕ ГЕНЕРАТОРОВ СВМ-ПОЛЕЙ В МЕТАЛЛУРГИИ

В.Ф.Панов, С.А.Курапов, А.Е.Бояршинов, А.В.Клюев, А.Н.Ошмарин

Пермский государственный национальный исследовательский университет, OOO «Сталь-59»

panov@psu.ru, svm-perm@mail.ru

В работе представлены новейшие результаты воздействия СВМ-генераторов на расплавы металлов. Сделана попытка теоретических обоснований использования СВМ-генераторов в металлургии на основе квантовой теории, бинарной геометрофизики Ю.С.Владимирова, теории Е.А.Губарева, работы Л.Б.Болдыревой, в которой физический вакуум наделяется свойствами сверхтекучего ³Не-В.

В период с 1989 г. по 1991 г. в Институте проблем материаловедения АН Украины под руководством директора Института, вице-президента АН УССР, академика В.И.Трефилова коллективом, возглавляемым нач. отдела, д.ф-м.н. В.П.Майбородой, был проведён цикл работ по изменению физико-химических свойств металлов при воздействии генератора нестационарного ЭМ-поля на расплавы металлов. Были получены однозначные результаты воздействия данного генератора на расплавы металлов в состоянии перегрева.

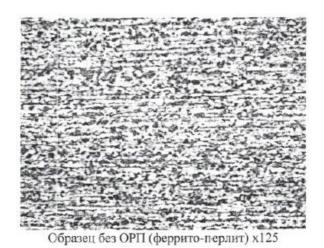
Нами, с 2004 по 2017 г. в условиях действующего производства, были проведены исследования по обработке расплавов чёрных и цветных металлов и сплавов, используемых в машиностроении и авиастроении, генераторами на электромагнитной основе (СВМ-генераторами). Были получены результаты по изменению микро- и макроструктуры, что привело к существенному улучшению механических свойств металлов и сплавов [1]. В настоящей статье излагаются как старые, так и новые результаты в этой области.



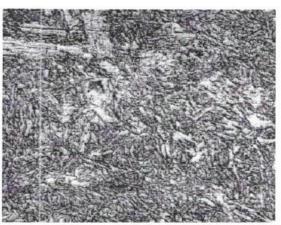
Рис. 1. Схема волновой обработки расплава:

I — плавильная печь с металлом (ковш); 2 — направленный излучатель (волновой канал) СВМ-генератора; 3 — излучающий элемент; 4 — формирующий блок-модулятор с модификатором; 5 — блок питания; 6 — волновое излучение. Фокус F излучателя ориентирован внутрь объема расплава. Волновая обработка расплава проводится сквозь стенку металлургической печи

Микроструктура стали 110Г13Л аустенитного класса г.Пермь, 2003



Плавка №1813. Контроль. Крупное аустенитное зерно 1-2 балла. Выделения карбидов. Увеличение х100.



Плавка №1817. Образец после СВМ-обработки. Мелкое аустенитное зерно 4.5-5 баллов. Выделения карбидов минимальные. Увеличение х100.

Микроструктура стали 20XГНМ после прокатки ЦНИИТМаш, 2008

Без СВМ-обработки (феррито-перлит явно выраженная полосчатость

Образец с ОРП (бейнит) х125

После СВМ-обработки (бейнит, отсутствие полосчатости)

Микроструктура стали 10ХН3МДЛ г.Пермь, НЦ ПМ, 2007

С СВМ-обработкой Без СВМ-обработки II

Рис. 5. Микроструктура образцов необработанной (I) и обработанной (I) стали 10ХН3МДЛ при различном увеличении:

 $a - \times 517$; $6 - \times 1300$; $8 - \times 2200$; $2 - \times 4200$

Макро и микроструктура алюминия Макро и микроструктура алюминия А7 без СВМ-обработки ФизТех УРО РАН, Ижевск, 2009

А7 после СВМ-обработки ФизТех УРО РАН, Ижевск, 2009

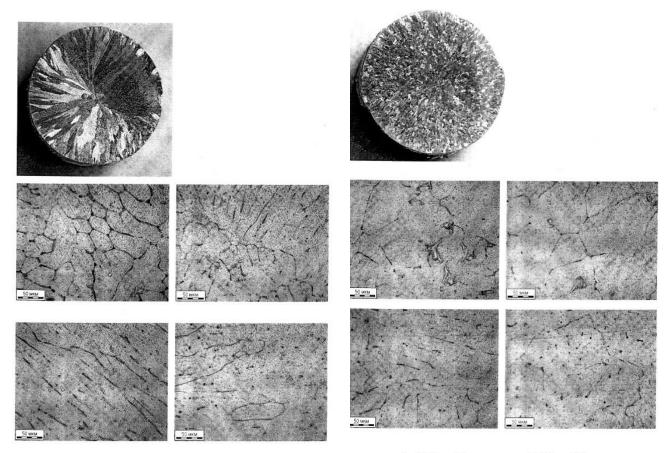


Рис.19. Макро- (а) и микроструктура (б-д) образца 1.4.

Рис.22. Макро- (а) и микроструктура (б-д) образца 2.10.

Таблица испытаний на неметаллические включения сталей 20, 20ХГНМ, 02Х22Н5АМ3 без и с СВМ-обработкой.

С - сульфиды, ОС - оксиды строчечные, ОТ - оксиды точечные 2008г., ЦНИИТМаш, Москва

Таблица 2 Неметаллические включения

Сталь		Неметаллические включения (балл)				
		OC	OT	C		
20	с полем	1,5	-	1		
	без поля	3,5	-	1		
<u>20ΧΓΗΜ</u>	с полем	1,5		1		
	без поля	4,5	2	1		
02Х22Н5АМЗ с полем		0,5	1,5	-		
	без поля	4,5	2	-		

Механические свойства низколегированой стали 35XГСЛ после СВМобработки в сравнении с высоколегированой сталью 10XН3МДЛ 2008г., Пермь

Марка стали	Предел ткучест О т. Мпа.	Предел прочности О вр. <u>Мпа.</u>	<u>Отн.</u> Удлинение δ %	<u>Отн</u> . Сужение Ѱ %	вязі К	рная кость CU /кв.м. -50°C
Chemical Accessor will be a compression of		зация - 1100°С, , отпуск – 590°С	нормализация - ! – вода,	960°C - воздух,		
-	DEAAE OF	T. /				
требован	ия РГ115-95		10	20	383	196
требован	ия РГ115-95 883	TY 940	10	20	383	196
•	883 OCT 977 – 75	940	10 – 900 - воздух, з			
35XГСЛ, Г	883 OCT 977 – 75	940				

Результаты испытаний образцов авиационных лопаток из сплава ЖС6У на длительную прочность. 2005г, Пермь

5.2.1 Длительная прочность.

Результаты испытания образцов на длительную прочность представлены в

таблице 2.

Таблица 2

	Номер об-	Технические у тан		Время выдерж-	Примечание	
плавки	разца в плавке	Напряжение, кгс/мм ²	Т испыта- ния, °С	ки под нагруз- кой, час	Примечание	
	1	25	975	42		
	2	25	975	52	Без воздейст-	
1	3	25	975	55	вия	
				Средняя 49,6		
	1	25	975	69		
2	2	25	975	47	Воздействие по режиму №	
2	3	25	975	86		
				Средняя 67,3		
	1	25	975	66		
	2	25	975	51	Воздействие	
3	3	25	975	131	по режиму №2	
				Средняя 82,6		
	1	25	975	48		
	2	25	975	56	Воздействие	
4	3	25	975	126	по режиму №3	
				Средняя 76,6		

Технический отчет № 541/15-4544

AMany_

В 2015 году, в городе Конья, Турция, была проведена работа по применению СВМ-генераторов на производстве отливок из алюминиевых сплавов для автомобильной промышленности.

На территории Турции используются алюминиевые сплавы (силумины) производителя ЕТі Aluminum стандартов ЕТІпогт. Ниже приведены примеры механических свойств стандартов ЕТІпогт в сравнении с характеристиками силуминов ЕТІпогт после СВМ-обработки.

Таблица 1. Химический состав алюминиевых сплавов ETInorm

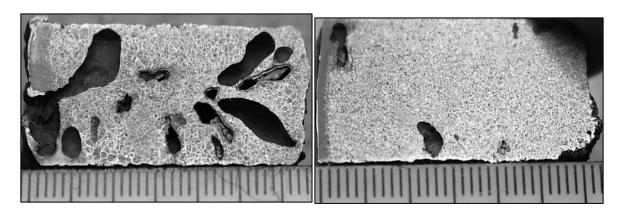
Марка сплава	Международный стандарт	Al	Fe	Si	Cu	Mn	Mg	Zn	Ni	Ti
Etial-141	ISO AlSi12Fe	87,30	0,68	11,94	0,01	0,1	0,01	0,02	-	0,02

Таблица 2. Механические свойства алюминиевых сплавов ETInorm

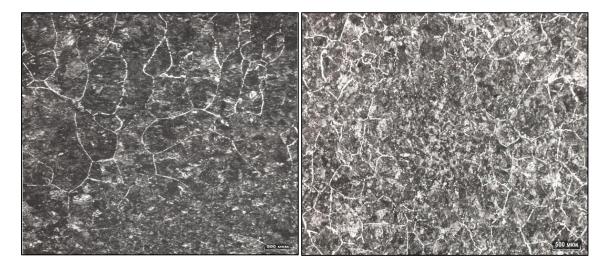
Марка сплава	Предел прочности на растяжение σ_{B} , МПа	Предел текучести $\sigma_{0,2}$, МПа	Предел прочности на изгиб σ_{fu} , МПа	Твердость HV
Etial-141	122	98	99	71,5

Таблица 3. Свойства алюминиевых сплавов ETInorm после CBM-обработки.

гаолица 5. Своиства алюминисвых сплавов Еттпогт после СБМ-оораоотки.								
Марка сплава	Предел прочности на растяжение σ_{B} , МПа	Предел текучести $\sigma_{0,2},$ МПа	Отн. удлинение при разрыве d, %	Сужение поперечного сечения, %	Твердость HV			
E-141-1-1	288,68	237,08	3,14	3,72	78			
E-141-2-1	274,77	238,91	1,14	0,86	77			
E-141-4-1	262,36	236,37	0,71	4,51	73			
E-141-5-2	266,73	227,94	1,53	4,89	74			

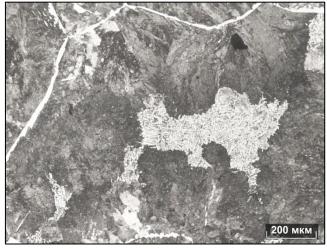

Как видно из результатов, представленных в таблицах, взятых из официального отчёта, уровень механических свойств силумина невысокой прочности, методом СВМ-обработки, доведён до уровня конструкционной стали.

Результаты экспериментов 2017г Сталь 40XH.

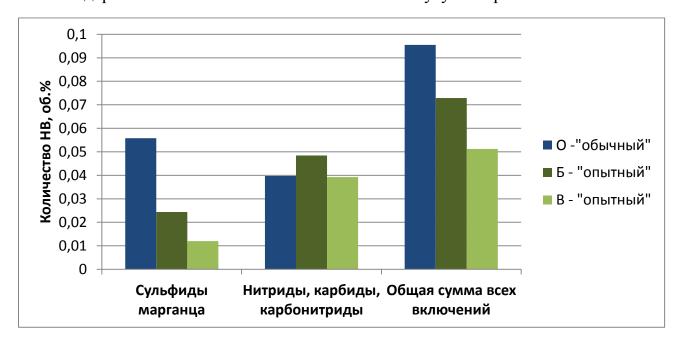

Макроструктура

Без СВМ-обработки

После СВМ-обработки

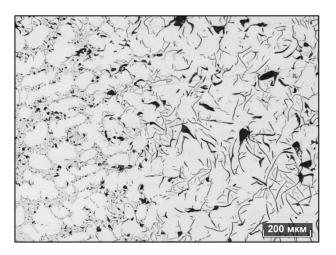


Микроструктура Без СВМ-обработки После СВМ-обработки

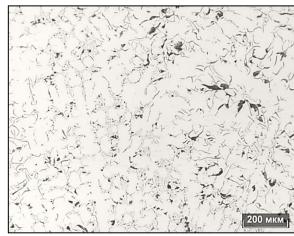

Наличие бейнитной структуры в стали 40ХН.

Содержание неметаллических включений в чугуне марки СЧ20

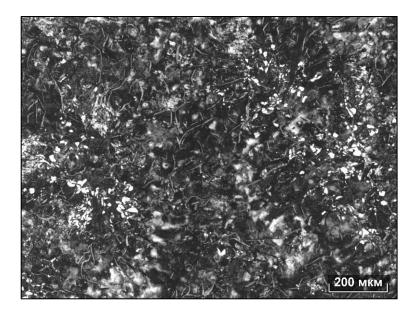
Чугун СЧ20.

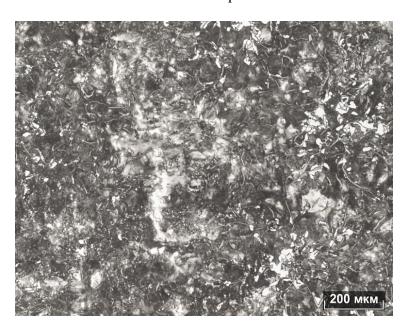


Результаты испытаний проб чугуна на временное сопротивление.


т сзульте	arbi nenb	ii aiiriri ii	poo iyi	yma ma bpc	Mennoe compe	JI HIBITOTINIC
Плавка		Диам.	Форма	Предел	Толщина	Твердость
	ГОСТ	образца		прочности,	образца для	HB
		MM		H/mm²	замера	
					твердости,мм	
Стандарт.	27208-	20	К	250	19,4	224,17
плавка	87					
После СВМ-		19,0	К	275	19,4	212,25
обр.						
После СВМ-		20	К	260	19,4	187,33
обр.						

Микроструктура образцов СЧ20 (графит на нетравленых шлифах)


Без СВМ-обработки


После СВМ-обработки

Без СВМ-обработки

После СВМ-обработки

Результаты экспериментов по повышению ПТР полипропилена, г.Екатеринбург, 2017г

Nº	№ образца	Условия	Результат измерений
		проведения	
		измерений	
1	П5 (контрольный)	T=154°C	ПТР=0,97 г/10 мин
		Р=2.16 кг	
2	П11	T=150°C	У образца невозможно измерить ПТР.
	(после СВМ-обработки		Образец при данной температуре имеет
	с модификатором)		слишком низкую вязкость
3	Π4	T=152°C	У образца невозможно измерить ПТР. Образец при
	(после СВМ-обработки		данной температуре является твёрдым телом.
	без модификатора)	T=159°C	У образца невозможно измерить ПТР. Образец при
			данной температуре является твёрдым телом
		T=168°C	ПТР=5,4 г/10 мин

ЗАКЛЮЧЕНИЕ:

Образец П11 при T=150°C находится в жидком состоянии, образец П4 при T=1680°C имеет ПТР=5,4 г/10 мин, а образец П5 при T=154°C и P=2.16 кг имеет ПТР=0,97 г/10 мин

Исходя из результатов измерений можно сделать вывод, что контрольный образец П5 по ПТР существенно отличается от образцов П4 и П11. При этом образец П11 обладает самой высокой текучестью среди испытанных образцов.

При изготовлении образца П11 в качестве модификатора в генераторе CBM использовалось вещество KOMPPLEN M PP 5X

Измерение Т плавления полипропилена

Nº	№ образца	Диапазон температуры	Средняя температура	Средняя температура
		плавления, °C	плавления единичного	плавления
			измерения, °C	образца, °C
1	П5	149-155	152	
	(контрольный)	152-168	160	156,8
		155-162	158,5	
2	П11	145-147	146	
		144-146	145	146,4
		147-149	148	
		145-148	146,5	
3	П4	154-160	157	
		154-156	155	156,6
		153-157	155	
4	П7	152-157	154,5	
		153-155	154	154,5
		154-156	155	

ЗАКЛЮЧЕНИЕ:

- 1. Большие интервалы температуры плавления образцов свидетельствуют о неоднородности их состава.
- 2. Температура плавления образца П11 существенно ниже и составляет 146,4°C

Попытка теоретического объяснения полученных результатов.

Мы предлагаем ряд гипотез, объясняющих действие нашего генератора на расплавы металлов.

Воздействие электромагнитного потенциала генератора может приводить квантовым образом к поляризации спинов атомов расплава, что сказывается на кристаллической решётки металла. твёрдого Изменения кристаллической решетке ΜΟΓΥΤ быть связаны рассеянием поляризованных электронов в металле за счёт эффекта Аронова-Бома [2], который обусловлен потенциалом электромагнитного поля нашего генератора. При этом меняется плотность вероятности распределения электронов в металле и квантовым образом меняется характер обменных сил, что в конечном итоге приводит к изменению образования структур дальнего порядка – зародышей кристаллизации. На это можно сказать, что эффект Ааронова-Бома – мал, но с другой стороны – нам не известны работы по расчёту этого эффекта в металлах, а также, возможно, мы имеем дело с модификацией этого эффекта.

Особого обоснования требует объяснение дистанционного воздействия в металлургии. Виртуальный перенос «информационных свойств металла—модификатора» на расплав требует специального рассмотрения. Для простейших квантовых систем проявляют себя квантовая нелокальность и квантовая запутанность. Видимо, в экспериментах на расплавах металлов (сложных системах) проявляет себя многочастичная квантовая запутанность (МКЗ). При этом действие СВМ-генератора следует описывать в рамках квантовой механики с учётом нелокальности и МКЗ. Информационная передача свойств металламодификатора квантовым образом передаётся на расплав металла с учётом квантовой нелокальности. Этот вопрос требует более глубокого рассмотрения.

развиваемой Ю.С.Владимировым бинарной геометрофизике среди первичных понятий в принципе нет места для полей – переносчиков взаимодействий [3,4].Это соответствует концепции дальнодействия, альтернативной теории поля. Ю.С.Владимиров развил и углубил теорию прямого межчастичного взаимодействия на основе реляционной концепции пространства-времени с использованием унарных и бинарных систем отношений [4]. В классической электродинамике электромагнитное поле сильно затухает в расплаве металла, а вот в бинарной геометрофизике Ю.С.Владимирова с учётом межчастичного взаимодействия, возможно, электромагнитное взаимодействие может существенно влиять на электроны в расплаве металла и значительно влиять на процесс кристаллизации расплава металла. Этот вопрос требует специального рассмотрения.

Далее отметим, что Губаревым Е.А. в работе [5] сформулированы уравнения электродинамики ориентируемой точки, основанной на принципе реальной относительности. В рамках предложенной в [5] теории предсказаны квазистатические свободные электромагнитные поля, имеющие неиндукционный характер и не возбуждающие никакой электродвижущей силы в плоскости, перпендикулярной направлению распространения.

Такие квазистатические поля должны иметь высокую проникающую способность в проводящих средах, так как по своей структуре они не производят никакой работы над свободными зарядами и, следовательно, не рассеиваются в таких средах. Квазистатические поля могут оказать влияние квантовым образом на эффект кристаллизации расплава металла. С этой стороны интересно исследовать СВМ-генераторы в отношении проявления таких полей.

Наконец, в работе [6], Л.Б.Болдырева показала, что наделяя физический вакуум свойствами сверхтекучего ³He-B можно описать ряд физических явлений. Если считать, что физический вакуум, как новый физический эфир, обладает свойствами сверхтекучего ³He-B, то естественно считать, что от СВМ-генераторов может генерироваться вихревой процесс в «сверхтекучем эфире». (Происходит распространение спиново-магнитных возмущений в эфире). Эти «вихри» могут влиять на электроны расплава металла, в результате чего меняются обменные силы и процесс образования зародышей кристаллизации.

Отметим, что все эти подходы объяснения действия CBM-генераторов в металлургии требуют квалифицированных теоретических и экспериментальных исследований, для чего необходимо достаточное финансирование.

Литература.

- 1. Бояршинов А.Е., Клюев А.В., Кокарева Н.А., Курапов С.А., Панов В.Ф., Стрелков В.В. Структура и механические свойства металла после обработки расплава в нестационарном электромагнитном поле волнового излучателя. Металловедение и термическая обработка металлов. №7 (649), 2009 г. С. 3-9
- 2. Цвелик А.М. Квантовая теория поля в физике конденсированного состояния. Перевод с английского. М.: ФИЗМАТЛИТ, 2002 г. 320 с.
- 3. Владимиров Ю.С. Реляционная теория пространства-времени и взаимодействий. Часть 2. Теория физических взаимодействий. М.: Изд. МГУ, 1998 г. 448 с.
- 4. Владимиров Ю.С. Физика дальнодействия: Природа пространства-времени. М.: Книжный дом «ЛИБРОКОМ», 2012 г. 224 с.
- 5. Губарев Е.А. Электродинамика ориентируемой точки. М.: Новый Центр, 2013 г. 70 с.
- 6. Болдырева Л.Б. Что даёт физике наделение физического вакуума свойствами сверхтекучего 3 He-B. М.: Книжный дом «ЛИБРОКОМ», $2012 \, \Gamma$. $120 \, C$.
- 7. Патент 2324575 РФ. Бояршинов А.Е., Клюев А.В., Кокарева Н.А., Курапов С.А., Панов В.Ф., Стрелков В.В. Способ обработки расплавленных материалов электромагнитными полями. Опубликовано 20.05.2008, Бюл. №14.
- 8. Патент 2336612 РФ. Бояршинов А.Е., Клюев А.В., Кокарева Н.А., Курапов С.А., Панов В.Ф., Стрелков В.В. Электромагнитная антенна. Опубликовано 20.10.2008, Бюл. №29.
- 9. Клюев А.В., Курапов С.А., Панов В.Ф. и др. Полевое глубинное воздействие на расплавы металла: Сб. статей по материалам Второй международной конференции «Деформация и разрушение материалов и наноматериалов». М.: ИМЕТ им. А.А.Байкова РАН, 2007. С. 144.

Перечень заводов и институтов, где проводились исследования:

Металлургическая отрасль:

ОАО «Мотовилихинские заводы», г.Пермь

ОАО «МК ОРМЕТО-ЮУМЗ», г.Орск

ОАО «Тулачермет», г.Тула

ОАО «Северский трубный завод», г.Полевской

ОАО «Уралмаш», г. Екатеринбург

ОАО «Тяжпрессмаш», г.Рязань

ОАО НЛМК, г.Липецк

ПЗЦМ, г.Пермь

Арселор-Миттал, г. Кривой Рог, Украина

Металлургический завод г.Конья, Турция

На предприятиях авиапрома:

ОАО «Пермские моторы», г.Пермь

ФГУП «Салют», г. Москва

ЦКБ им.Илюшина, г.Москва

ООО «НовосибНИАТ», г. Новосибирск

В научно-исследовательских учреждениях:

ЦНИИКМ «Прометей», г.С.-Петербург

ЦНИИТМАШ, г. Москва

ВИЛС, г. Москва

ВИАМ, г. Москва

Физико-технический институт УрО РАН, г.Ижевск

Научный центр порошкового материаловедения, г. Пермь

Уральский Государственный Лесотехнический университет, г. Екатеринбург